Procs
proc agg(grouped: GroupedDataFrame; column: string; operations: seq[string]): DataFrame {. ...raises: [KeyError, ValueError], tags: [], forbids: [].}
- Apply multiple aggregation operations to a column
proc count(grouped: GroupedDataFrame): OrderedTable[string, int] {....raises: [], tags: [], forbids: [].}
- Count number of rows in each group
proc fillNa(df: DataFrame; fillValue: Value): DataFrame {....raises: [], tags: [], forbids: [].}
- Fill missing values in all columns of a DataFrame with the specified fill value
proc groupBy(df: DataFrame; by: string): GroupedDataFrame {....raises: [KeyError], tags: [], forbids: [].}
proc max(grouped: GroupedDataFrame; column: string): OrderedTable[string, Value] {. ...raises: [KeyError, ValueError], tags: [], forbids: [].}
- Compute maximum of a column for each group
proc mean(grouped: GroupedDataFrame; column: string): OrderedTable[string, float64] {....raises: [KeyError, ValueError], tags: [], forbids: [].}
- Compute mean of a column for each group
proc min(grouped: GroupedDataFrame; column: string): OrderedTable[string, Value] {. ...raises: [KeyError, ValueError], tags: [], forbids: [].}
- Compute minimum of a column for each group
proc newDataFrame(): DataFrame {....raises: [], tags: [], forbids: [].}
proc newDataFrame(data: OrderedTable[string, Series]): DataFrame {. ...raises: [Exception], tags: [RootEffect], forbids: [].}
proc newSeriesWithDataType(data: seq[Value]; name = ""; dtype: DataType = dtString): Series {....raises: [], tags: [], forbids: [].}
- Create a new series given a sequence of data, the name, and the datatype itself.
proc renameColumn(df: DataFrame; oldName, newName: string) {. ...raises: [ValueError, KeyError], tags: [], forbids: [].}
proc slice(df: DataFrame; colNames: seq[string]): DataFrame {. ...raises: [KeyError], tags: [], forbids: [].}
- Slice the DataFrame by column names. Returns a new DataFrame with only the specified columns.
proc slice(df: DataFrame; rowSlice: Slice[int]): DataFrame {....raises: [KeyError], tags: [], forbids: [].}
- Slice the DataFrame by row range using Nim's Slice syntax.
proc slice(df: DataFrame; startRow: int = 0; endRow: int = -1; startCol: int = 0; endCol: int = -1): DataFrame {....raises: [KeyError], tags: [], forbids: [].}
-
Slice the dataframe by rows and columns.
Parameters:
- startRow: Starting row index (inclusive, default 0)
- endRow: Ending row index (exclusive, -1 means all rows)
- startCol: Starting column index (inclusive, default 0)
- endCol: Ending column index (exclusive, -1 means all columns)
proc sum(grouped: GroupedDataFrame; column: string): OrderedTable[string, Value] {. ...raises: [KeyError, ValueError], tags: [], forbids: [].}
- Compute sum of a column for each group
proc toDateTime(s: string; format = "yyyy-MM-dd"): DateTime {. ...raises: [TimeParseError, TimeFormatParseError], tags: [TimeEffect], forbids: [].}
proc updateShape(df: DataFrame) {....raises: [], tags: [], forbids: [].}
proc valueCounts(s: Series): DataFrame {....raises: [Exception], tags: [RootEffect], forbids: [].}